Pre-training Context and Time Aware Location Embeddings from Spatial-Temporal Trajectories for User Next Location Prediction

Yan Lin, BJTU 2021.2

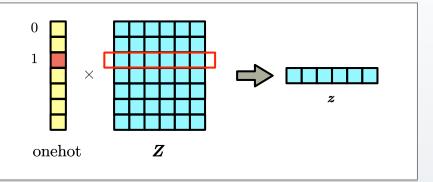
Pre-training Location Embeddings

> Spatial-temporal trajectory mining

 Increasing availability of LBS data led to a burst of studies on location prediction

> Learning location embeddings

- A fundamental problem, essential for accurate prediction
- Fully-connected embedding layers
 - Hard to migrate to other models
 - Might suffer from over-fitting problems
- Pre-trained embedding vectors
 - Can be shared across various downstream models
 - Incorporate more general and comprehensive information



How FC embedding layer works

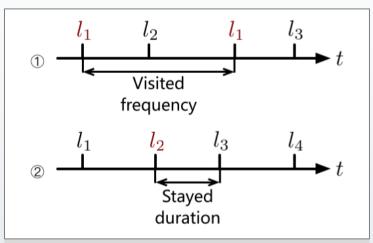
Pre-training Location Embeddings

> Basic idea of pre-training location embeddings

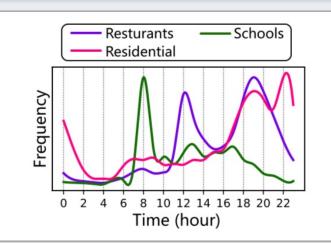
- Borrowed from language modeling in NLP
- Based on distributed word representations like word2vec^[1]

> Temporal information

- Relative visited time difference between locations: reflect visited frequency or stayed duration
- Absolute visited time: reflect locations' functionalities
- Incorporated by multiple location embedding methods^[2,3], yet rarely simultaneously considered



Relative visited time difference

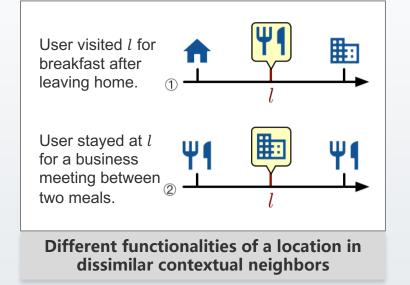


Absolute visited time distributions

Pre-training Location Embeddings

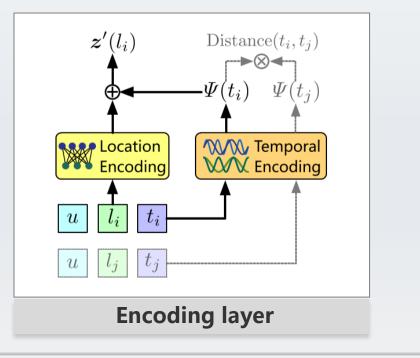
> Multi-functionality of locations

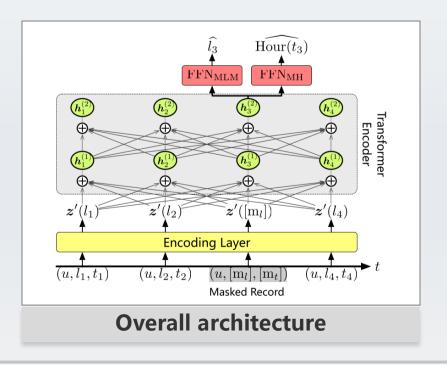
- People may visit the same location for different purposes in dissimilar contextual neighbors
- Incorporate the specific context of a location into embedding methods can yield higher quality representations
- Distributed representation-based methods mix a location' s various functionalities into one latent vector



Context and Time Aware Location Embedding (CTLE)

- Calculate target location' s embedding by a mapping function of its contextual neighbors
 - Incorporate context-specific functionalities
- Incorporate two aspects of temporal information
 - Further improve embedding quality





Intro-

duction

Embed Locations into Latent Vectors

> Necessity of location embedding

• Feature-based models require locations begin represented by latent vectors

Fully-connected embedding layers

- Randomly initialize one latent vector for each location
- Trained with task-specific objectives
- Hard to migrate to other models
- Suffers from over-fitting when dealing with small-scale data

Related

Work

> Pre-trained latent representation

- Trained with un-supervised or self-supervised objectives
- Common practice in Language Process and Computer Vision

> Pre-training location embeddings from trajectories

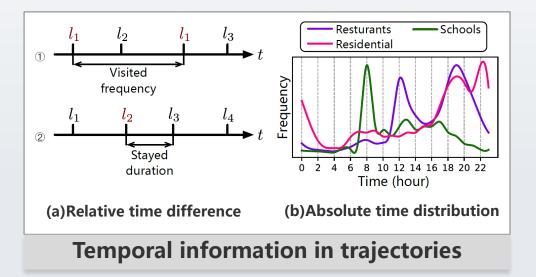
- Akin to pre-training word embeddings from sentences
- Model the co-occurrence of targets and contexts to extract functionality information

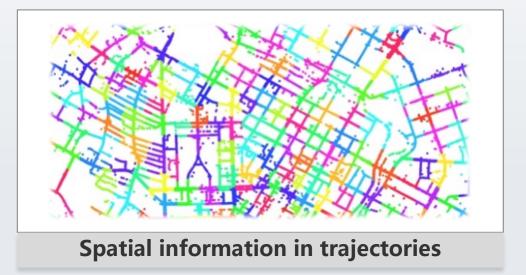
Sentence	The proposed method car			
Trajectory	inform context Beijing Jiaotong University Bহায়ন্দ্রsjয়েotong University	target → Xi Zhi M →Tian An N		
Similarity between sentences and trajectories				

Uniqueness of Trajectories

> Temporal correlation

• Extract more accurate characteristic information





Related

Work

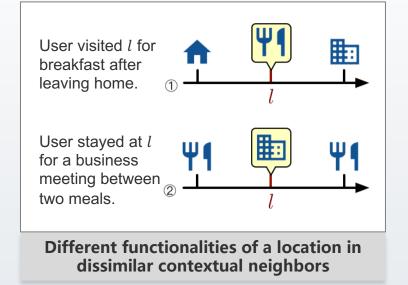
Multi-functionality of Locations

> Multi-functional locations

- Common in real-world
- People' s one visit to a location is still single-purposed
- Indicate the specific functionality through contexts

Inspiration from NLP

- Tackle the problem ambiguity of words: contextual embedding
- Migrate to location embedding: calculate representation vectors based on targets' specific contextual neighbors



Preliminary Definitions

> Spatial-Temporal trajectory

- A user' s movements during a certain period, represented by a sequence of visiting records *s*
- A visiting record (*u*, *l*, *t*): user *u* visited location *l* at time *t*

Problem definition

- Pre-train a mapping function *f*
- Object: generate a contextual embedding vector z(l) for target location l
- Given: the location' s context C(l)



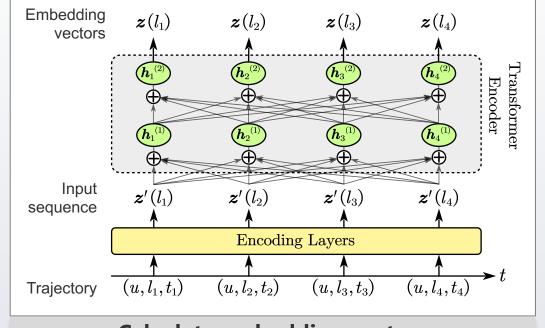
Context-aware Location Embedding

> Construct mapping function f

- Calculate embedding vector z(l) for location l via: $z(l) = f(l, C(l))^{①}$
- Implement function *f* utilizing a bidirectional Transformer^[4] Encoder

Calculate embedding vectors

- Given: trajectory $s = \{(u, l_1, t_1), (u, l_2, t_2), \dots, (u, l_n, t_n)\}$
- Define all locations in s except l_i as its context $C(l_i)$
- Fetch an input vector z'(l) for each location l: z'(l) = Ω(l)
 Forming input sequence {z'(l₁), z'(l₂), ..., z'(l_n)}
- Feed the Transformer encoder with input sequence
 - Regard *i*-th item of output memory sequence $h_i^{(N)}$ as $z(l_i)$
- Corresponds to the abstract form ①

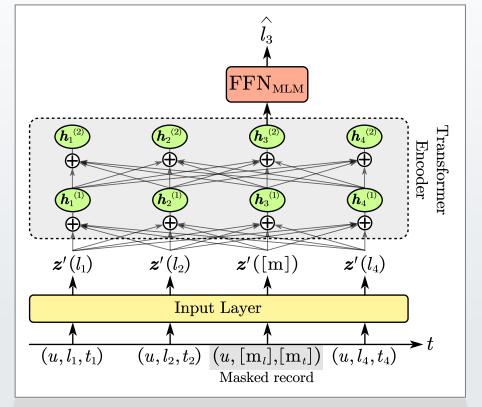


Calculate embedding vectors

Context-aware Location Embedding

> **Pre-training mapping function** *f*

- Make *f* understand correlation between targets and contexts
- Mask a portion of the trajectory, then predict the masked locations
 - Replace the masked visiting records with $(u, [m_l], [m_t])$
 - Predict the original locations using a fully-connected network
- An implementation of the Masked Language Model^[5]

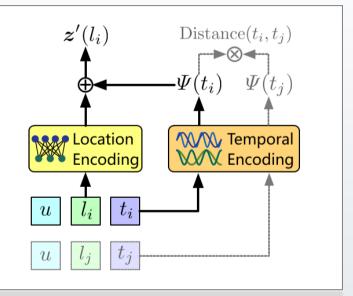


Pre-train the model using MLM

Incorporating Temporal Information

> Temporal Encoding

- Incorporate relative visited time difference
- A small modification of positional encoding
- $\Psi(t) = [\cos(\omega_1 t), \sin(\omega_1 t), \dots, \cos(\omega_d t), \sin(\omega_d t)]$
 - $\Psi(t) \cdot \Psi(t + \delta) = \cos(\omega_1 \delta) + \dots + \cos(\omega_d \delta)$, means the distance between two encoding vectors is learnable, and is independent of t
- Modify the calculation of input vector to $z'(l) = \Omega(l) + \Psi(t)$

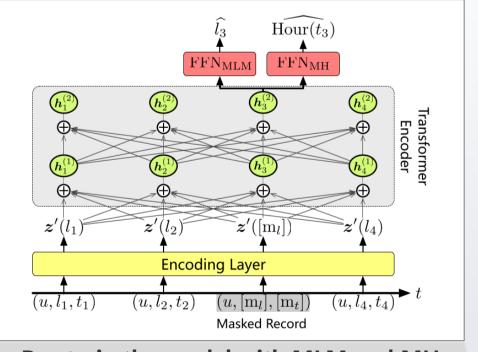


Encoding layer with temporal encoding

Incorporating Temporal Information

> Masked Hour Pre-training Objective

- Incorporate absolute visited time
- Predict the original visited hour index for a masked visiting record
- Forms a multi-task learning objective with the prediction of location index



Pre-train the model with MLM and MH

> Dataset

- Two real-world mobile signaling data from Beijing and Shenyang, denoted as mobile-PEK and mobile-SHE
- Record users' movements through switching events between telecommunication base stations
 - Base stations \rightarrow Locations
 - Users' entering to service area \rightarrow Visiting records

> Pre-process

- Filter out passing points
 - Remove visiting records with short duration
- One trajectory: a user' s record sequence in one day

Dataset	#Users	#Locations	#Records	Time span
Mobile-PEK	12,691	7,279	1,383,422	5 days
Mobile-SHE	10,564	7,201	607,581	11 days

Statistics of datasets

Baselines

> Baseline Location Embedding Methods

 Two classic distributed embedding models and some state-of-the-art location embedding models

Baselines	Pre-trained	Extra information
FC Layer	No	N/A
Skip-Gram	Yes	N/A
POI2Vec	Yes	Spatial
Geo-Teaser	Yes	Temporal + Spatial
TALE	Yes	Temporal
HIER	Yes	Temporal

> Downstream Prediction Models

- User next location prediction models
- Utilized for evaluating the effectiveness of embedding methods

Models	Based-on	Extra information
ST-RNN	RNN	Spatial and temporal intervals
ERPP	LSTM	Visited timestamp
ST-LSTM	LSTM	Spatial and temporal intervals

Exp	perim	ent

Prediction Model		ST-RNN		ERPP		ST-LSTM				
Dataset	Metric Embedding Method	Accuracy (%)	macro- Recall (%)	macro- F1 (%)	Accuracy (%)	macro- Recall (%)	macro- F1 (%)	Accuracy (%)	macro- Recall (%)	macro- F1 (%)
Mobile-PEK	FC Layer * Skip-gram POI2Vec Geo-Teaser TALE HIER CTLE (ours)	$\begin{array}{r} 3.744 {\pm} 0.10 \\ 3.671 {\pm} 0.11 \\ 3.992 {\pm} 0.08 \\ 3.998 {\pm} 0.13 \\ 4.199 {\pm} 0.05 \\ \underline{4.339 {\pm} 0.04} \\ \overline{\textbf{5.068 {\pm} 0.05}} \end{array}$	$\begin{array}{c} 1.739 {\pm} 0.06 \\ 1.777 {\pm} 0.11 \\ 2.281 {\pm} 0.08 \\ 2.166 {\pm} 0.07 \\ 2.240 {\pm} 0.07 \\ \underline{2.440 {\pm} 0.07} \\ \underline{2.890 {\pm} 0.11} \end{array}$	$\begin{array}{c} 1.449 {\pm} 0.19 \\ 1.423 {\pm} 0.05 \\ 1.838 {\pm} 0.06 \\ 1.796 {\pm} 0.07 \\ 1.815 {\pm} 0.06 \\ \underline{1.862 {\pm} 0.08} \\ \hline \textbf{2.312 {\pm} 0.02} \end{array}$	$\begin{array}{r} 4.373 {\pm} 0.14 \\ 4.611 {\pm} 0.01 \\ 5.024 {\pm} 0.08 \\ 5.159 {\pm} 0.05 \\ 5.457 {\pm} 0.03 \\ \underline{5.607 {\pm} 0.09} \\ 6.481 {\pm} 0.05 \end{array}$	$\begin{array}{c} 2.017 \pm 0.04 \\ 2.368 \pm 0.07 \\ 2.595 \pm 0.07 \\ 2.671 \pm 0.08 \\ \underline{3.237 \pm 0.07} \\ 2.870 \pm 0.08 \\ \mathbf{4.002 \pm 0.04} \end{array}$	$\begin{array}{c} 1.595 {\pm} 0.05 \\ 1.779 {\pm} 0.04 \\ 2.035 {\pm} 0.06 \\ 2.039 {\pm} 0.03 \\ \underline{2.587 {\pm} 0.03} \\ 2.176 {\pm} 0.04 \\ \textbf{3.066 {\pm} 0.06} \end{array}$	$\begin{array}{r} 4.542 {\pm} 0.15 \\ 4.877 {\pm} 0.05 \\ 5.163 {\pm} 0.10 \\ 5.305 {\pm} 0.05 \\ 5.511 {\pm} 0.05 \\ \underline{5.589 {\pm} 0.15} \\ \underline{6.473 {\pm} 0.09} \end{array}$	$\begin{array}{c} 2.092 \pm 0.09 \\ 2.586 \pm 0.06 \\ 2.682 \pm 0.08 \\ 2.739 \pm 0.04 \\ \underline{3.152 \pm 0.10} \\ 2.839 \pm 0.11 \\ \textbf{4.072 \pm 0.13} \end{array}$	$\begin{array}{c} 1.689 {\pm} 0.07 \\ 1.947 {\pm} 0.04 \\ 2.077 {\pm} 0.10 \\ 2.084 {\pm} 0.02 \\ \underline{2.486 {\pm} 0.13} \\ 2.165 {\pm} 0.02 \\ \mathbf{3.097 {\pm} 0.13} \end{array}$
Mobile-SHE	FC Layer [*] Skip-gram POI2Vec Geo-Teaser TALE HIER CTLE (ours)	$\begin{array}{c} 3.674 {\pm} 0.07 \\ 3.646 {\pm} 0.05 \\ 3.936 {\pm} 0.04 \\ 4.006 {\pm} 0.05 \\ \underline{4.689 {\pm} 0.10} \\ 4.539 {\pm} 0.22 \\ \textbf{5.124 {\pm} 0.20} \end{array}$	2.408 ± 0.07 2.278 ± 0.08 2.605 ± 0.04 2.455 ± 0.03 3.444 ± 0.09 3.117 ± 0.15 3.392 ± 0.11	$\begin{array}{c} 1.946 {\pm} 0.05 \\ 1.809 {\pm} 0.05 \\ 2.084 {\pm} 0.03 \\ 1.897 {\pm} 0.02 \\ \textbf{2.761} {\pm} \textbf{0.08} \\ 2.521 {\pm} 0.09 \\ 2.720 {\pm} 0.07 \end{array}$	$\begin{array}{r} 4.343 {\pm} 0.18 \\ 4.405 {\pm} 0.06 \\ 4.923 {\pm} 0.06 \\ 4.932 {\pm} 0.12 \\ 5.179 {\pm} 0.09 \\ \underline{5.624 {\pm} 0.16} \\ 6.311 {\pm} 0.04 \end{array}$	$\begin{array}{c} 2.454 {\pm} 0.10\\ 2.459 {\pm} 0.06\\ 2.992 {\pm} 0.02\\ 2.895 {\pm} 0.02\\ \underline{3.446 {\pm} 0.06}\\ \overline{3.273 {\pm} 0.17}\\ \textbf{3.984 {\pm} 0.05} \end{array}$	$\begin{array}{c} 2.037 {\pm} 0.09 \\ 1.974 {\pm} 0.05 \\ 2.408 {\pm} 0.02 \\ 2.410 {\pm} 0.07 \\ \underline{2.883 {\pm} 0.04} \\ \overline{2.708 {\pm} 0.18} \\ \textbf{3.340 {\pm} 0.07} \end{array}$	$\begin{array}{r} 4.416 {\pm} 0.20 \\ 4.508 {\pm} 0.05 \\ 4.930 {\pm} 0.07 \\ 5.130 {\pm} 0.15 \\ 5.204 {\pm} 0.06 \\ \underline{5.672 {\pm} 0.09} \\ \hline \textbf{6.325 {\pm} 0.08} \end{array}$	$\begin{array}{c} 2.450 {\pm} 0.14 \\ 2.507 {\pm} 0.07 \\ 2.890 {\pm} 0.10 \\ 2.754 {\pm} 0.07 \\ \underline{3.399 {\pm} 0.11} \\ 3.252 {\pm} 0.07 \\ \mathbf{3.950 {\pm} 0.11} \end{array}$	$\begin{array}{c} 2.005 \pm 0.11 \\ 1.998 \pm 0.07 \\ 2.305 \pm 0.08 \\ 2.245 \pm 0.06 \\ \underline{2.787 \pm 0.11} \\ 2.680 \pm 0.05 \\ \mathbf{3.291 \pm 0.06} \end{array}$

Prediction performance comparison of different approaches

- Incorporating temporal information can improve representational quality
- Context-aware embedding can provide more accurate representation for multi-functional locations

Results and Analysis

Component analysis

• Comparing our proposed method with three of its variants

Variants	Encoding	Pre-train objective
Basic	Positional Encoding	MLM
+TempEnc	Temporal Encoding	MLM
+MH	Positional Encoding	MLM+MH
CTLE	Temporal Encoding	MLM+MH



• Combine two aspects of temporal information can be beneficial

Future Works

- How to more accurately model temporal information in absolute visited time distribution?
- How to further incorporate spatial correlation?

Thank you for your time!

End