

Self-supervised Learning of Trajectory Data

Yan Lin Postdoc, DESS Group Sep. 24, 2024

Sources, Information, and Utilization of Trajectory Data

Problem

Machine Learning of Trajectory Data

Methodology

Implementation of SSL on Trajectory Data

4 Outlook

Future of Self-Supervised Learning on Trajectory Data

Sources, Information, and Utilization of Trajectory Data

Problem

Machine Learning of Trajectory Data

Methodology

Implementation of SSL on Trajectory Data

4 Outlook

Future of Self-Supervised Learning on Trajectory Data

Definition of Trajectory Data

>A type of spatiotemporal structure

- Sequences of (location, time) pairs
- Records the movement behavior of objects or individuals

Source of Trajectory Data

Recordings of movements

- Individuals and location-based services
- Vehicle and in-car GPS systems
- Vessel and AIS (automatic identification system)

[user]	[check-in time]	[latitude]	[longitude]	[location id]
196514	2010-07-24T13:45:06Z	53.3648119	-2.2723465833	145064
196514	2010-07-24T13:44:58Z	53.360511233	-2.276369017	1275991
196514	2010-07-24T13:44:46Z	53.3653895945	-2.2754087046	376497
196514	2010-07-24T13:44:38Z	53.3663709833	-2.2700764333	98503
196514	2010-07-24T13:44:26Z	53.3674087524	-2.2783813477	1043431
196514	2010-07-24T13:44:08Z	53.3675663377	-2.278631763	881734
196514	2010-07-24T13:43:18Z	53.3679640626	-2.2792943689	207763
196514	2010-07-24T13:41:10Z	53.364905	-2.270824	1042822

Trajectory Data

	signal_id	day_num	vehicle_id	trip_id	time_stamp	latitude	longitude	speed
1	1	190.511826148	10	2400	0	42.2782011111	-83.7484502778	33.7599983215
2	2	190.511826148	10	2400	100	42.2782011111	-83.7484502778	33.7599983215
3	3	190.511826148	10	2400	1000	42.2782011111	-83.7484502778	31.5599994659
4	4	190.511826148	10	2400	1100	42.2782011111	-83.7484502778	31.5599994659
5	5	190.511826148	10	2400	1700	42.2782011111	-83.7484502778	31.5599994659
6	6	190.511826148	10	2400	2100	42.2782011111	-83.7484502778	29.4099998474
7	7	190.511826148	10	2400	2200	42.2782011111	-83.7484502778	29.4099998474
8	8	190.511826148	10	2400	2500	42.2784791667	-83.7483075	29.4099998474

Method

Information in Trajectory Data

Various aspects of spatiotemporal information

- Basic movement information
- Inherent information, such as functionalities of locations and traffic conditions

Outlook

Utilization of Trajectory Data

>A variety of spatiotemporal analysis tasks

- Analysis of movement behavior
- Analysis of location functionalities
- Analysis of traffic conditions

Problem

Background

Method

Outlook

Trajectory Data Modeling

Background

Problem

Method

Outlook

• Wide availability and board utilization – both feasible and important

Sources, Information, and Utilization of Trajectory Data

Problem

Machine Learning of Trajectory Data

Methodology

Implementation of SSL on Trajectory Data

Outlook 4

Future of Self-Supervised Learning on Trajectory Data

Machine Learning (ML) of Trajectory Data

- Capable of automatically extracting rich information from trajectory data and performing spatiotemporal analysis
- Performance of ML methods depends greatly on the quality of supervision

Supervised Learning

- Directly supervises ML methods with labels for a specific analysis task
- Limited by the availability and quality of labels, poor in task transferability

Self-supervised Learning (SSL)

• Supervises ML methods by constructing supervision from unlabeled data

Outlook

• Higher data availability, capable of performing a variety of tasks

SSL in Popular Domains

• SSL has shown promising performance in domains like natural language processing (NLP) and computer vision (CV)

What information to extract with SSL?

How to extract the information with SSL?

Sources, Information, and Utilization of Trajectory Data

Problem

Machine Learning of Trajectory Data

4

Methodology

Implementation of SSL on Trajectory Data

Outlook

Future of Self-Supervised Learning on Trajectory Data

Popular SSL Frameworks

16

>Background: Word Embedding

• Maps words into fixed-dimensional embedding space, where the positions of words correspond to their semantic meanings

Outlook

Problem

Background: Word Embedding

- Static word embedding: Assigns one embedding vector to each word
- Contextual word embedding: Dynamically calculates embedding vectors based on words' contexts

- T. Mikolov, K. Chen, G. Corrado, and J. Dean, "Efficient Estimation of Word Representations in Vector Space." in ICLR 2013.
- J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding." in NAACL-HLT 2019.

Migration: Trajectories and Sentences

• Similarities: Both are sequences, both possess contextual correlations

Outlook

	- Contonco	The proposed method can i	incorporate to	corporate temporal information …		
Cor	Sentence	The proposed method can	fuse t	emporal information …		
ntex		Context	Target	Context		
tual	Trajectory	$\cdots \rightarrow$ AAU Library \rightarrow	AAU CS	\rightarrow Innovation Hub $\rightarrow \cdots$		
		$\cdots \rightarrow AAU Library \rightarrow L$	AAU Chem.	\rightarrow Innovation Hub $\rightarrow \cdots$		

Migration: Trajectories and Sentences

• Uniqueness: Trajectories contains spatiotemporal features and information

Example of existing methods: POI2Vec

• Splits the space using a hierarchical grid, capturing spatial correlations between locations

Hierarchical Grid

Huffman tree with spatial correlations

Feng S, Cong G, An B, et al. POI2Vec: Geographical latent representation for predicting future visitors[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2017, 31(1).

Example of existing methods: CTLE

 Dynamically calculates embedding vectors for locations based on the specific contexts (trajectories) they are in

Embedding vector calculation

Yan Lin, Huaiyu Wan, et al. Pre-training Context and Time Aware Location Embeddings from Spatial-Temporal Trajectories for User Next Location Prediction. *The 35th AAAI Conference on Artificial Intelligence* (AAAI), 2021, 35(5), 4241-4248.

Conclusion

Background

Problem

Method

Outlook

• Migrating word embedding techniques to self-supervised learning of trajectory data

>Background: Auto-Encoding (AE)

- A pair of encoder and decoder: the encoder compresses raw features into embedding vectors, and the decoder reconstructs raw features from the embedding vectors.
- Compresses essential information contained in raw features into the embedding vectors

Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. science, 2006, 313(5786): 504-507.

>Adaptation: Features are the key

- Compressed information in the embedding vectors largely depends on the input features
- The key is the features of trajectory data provided to the AE framework

>Example of existing methods: Traj2Vec

 Uses a sliding-window to prepare high-order features like movement distance, acceleration, and heading directions

Yao D, Zhang C, Zhu Z, et al. Trajectory clustering via deep representation learning[C]//2017 international joint conference on neural networks (IJCNN). IEEE, 2017: 3880-3887.

Problem Method

Conclusion

• Adapting the auto-encoding framework for self-supervised learning of trajectory data

>Background: Contrastive Learning (CL)

- Creates multiple views of the data, with views of same item having similar embeddings and views of different items having dissimilar embeddings
- Extracts high-level semantic meanings that are independent of views

Chen T, Kornblith S, Norouzi M, et al. A simple framework for contrastive learning of visual representations[C]//Inte rnational conference on machine learning. PMLR, 2020: 1597-1607.

>Adaptation: Trajectory View Construction

• The key is how to construct multiple views of trajectory data

>Example of existing methods: MMTEC

- Creates two views for each trajectory
 - map-matching the trajectory as a discrete view
 - using spline interpolation to create a continuous view

Yan Lin, Huaiyu Wan, et al. Pre-training General Trajectory Embeddings with Maximum Multi-view Entropy Coding. *IEEE Transactions on Knowledge and Data Engineering* (TKDE), 2024.

Conclusion

• Adapting the contrastive learning framework for self-supervised learning of trajectory data

Sources, Information, and Utilization of Trajectory Data

Problem

Machine Learning of Trajectory Data

Methodology

Implementation of SSL on Trajectory Data

4 Outlook

Future of Self-Supervised Learning on Trajectory Data

SSL in NLP and CV

>Amazing data and task transferability

- Large-scale dataset
- Inherent shared semantic information across domains
- Most tasks can be described with natural language prompts

Natural language processing (NLP) is an interdisciplinary subfield of computer science and information retrieval. It is primarily concerned with giving computers the ability to support and manipulate human language. ...

WIKIPEDIA The Free Encyclopedia

Natural language processing (NLP) is the ability of a computer program to understand human language as it's spoken and written -- referred to as natural language. It's a component of artificial intelligence (AI).

Outlook

Shared semantic information

SSL of Time Series Data

Good data and task transferability

- Inherent shared semantic information across domains
- Most tasks can be formulated as generation of time series

SSL of Trajectory Data

Poor data transferability

• How to learn the knowledge (transferable) rather than the features (non-transferable)?

SSL of Trajectory Data

Flawed task transferability

• How to generalize the input/output schema across different tasks?

Thank You!

yanlincs.com